

APPLICATION OF INFORMATION RETRIEVAL TECHNIQUES TO

HETEROGENEOUS DATABASES IN THE VIRTUAL DISTRIBUTED

LABORATORY

Rodney D. Lykins, 1st Lieutenant, USAF

AFIT/GCS/ENG/02M-06

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Report Documentation Page

Report Date
5 Mar 02

Report Type
Final

Dates Covered (from... to)
Mar 2001 - Mar 2002

Title and Subtitle
Application of Information Retrieval Techniques to
Heterogeneous Databases in the Virtual Distributed
Laboratory

Contract Number

Grant Number

Program Element Number

Author(s)
1st Lt Rodney D. Lykins, USAF

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and
Address(es)
Air Force Institute of Technology Graduate School
of Engineering and Management (AFIT/EN) 2950 P
Street, Bldg 640 WPAFB OH 45433-7765

Performing Organization Report Number
AFIT/GCS/ENG/02M-6

Sponsoring/Monitoring Agency Name(s) and
Address(es)
AFRL?SN ATTN: Eric Baenen 5200 Springfield
Pike, Suite 200 Dayton, OH 45431-1289

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
The original document contains color images.

Abstract
The Department of Defense (DoD) maintains thousands of Synthetic Aperture Radar (SAR), Infrared (IR),
Hyper-Spectral intelligence imagery and Electro-Optical (EO) target signature data. These images are
essential to evaluating and testing individual algorithm methodologies and development techniques within
the Automatic Target Recognition (ATR) community. The Air Force Research Laboratory Sensors
Directorate (AFRL/SN) has proposed the Virtual Distributed Laboratory (VDL) to maintain a central
collection of the associated imagery metadata and a query mechanism to retrieve the desired imagery. All
imagery metadata is stored in relational database format for access from agencies throughout the federal
government and large civilian universities. Each set of imagery is independently maintained at each
agencys location along with a local copy of the associated metadata that is periodically updated and sent
to the VDL. This research focuses on applying information retrieval techniques to the multiple
heterogeneous imagery metadata databases to present users the most relevant images based on user
defined search criteria. More specifically, it defines a hierarchical concept thesaurus development
methodology to handle the complexities of heterogeneous databases and the application of two classic
information retrieval models. The results indicate this type of thesaurus-based approach can significantly
increase the precision and recall levels of retrieving relevant documents.

Subject Terms
Virtual Distributed Laboratory, Information Retrieval, Hierarchical Thesaurus, Vector Model, Extended
Boolean Model.

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
93

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or United States Government.

AFIT/GCS/ENG/02M-06

APPLICATION OF INFORMATION RETRIEVAL TECHNIQUES TO

HETEROGENEOUS DATABASES IN THE VIRTUAL DISTRIBUTED

LABORATORY

Presented to the faculty of the Graduate School of Engineering & Management

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Science)

Rodney D. Lykins, B. S.

1st Lieutenant, USAF

March 2002

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

.

Acknowledgments

This information retrieval research was only possible with the help and support of

many different people. I would like to thank God for allowing me to be here and have

the support and dedication to complete this monumental task. I would like to thank my

wife for her unwavering support during the past eighteen months. Without her loving

support and understanding during the trials of the last year none of this would have been

possible. I would also like to thank my advisor, Maj Karl Mathias, for providing

assistance and guidance when needed. I would also like to thank my sponsor, Eric

Baenen from AFRL/SN, for providing me such an interesting and challenging thesis topic

to work on. I would also like to thank the other members of my committee, LtCol Tim

Jacobs and Dr. Thomas Hartrum. Finally, I would like to thank my fellow classmates

who kept me sane and focused on the task at hand.

iv

Table of Contents

Page

Acknowledgments.. iv

Table of Figures ...viii

I. Introduction..1

1.1 Definition of Terms.. 2
1.2 VDL Problem Statement .. 2
1.3 VDL Research Focus ... 6
1.4 Summary .. 7

II. Literature Review ...8

2.1 Introduction.. 8
2.2 VDL Overview... 9
2.3 Metadata... 10
2.4 Relational Database Model .. 12

2.4.1 Data Storage...12
2.4.2 Data Access and Manipulation ..14

2.5 Heterogeneous Databases .. 15
2.5.1 Schema Differences ...15
2.5.2 Identical Data With Different Name..15
2.5.3 Different Data With Same Name...16
2.5.4 Unit Of Measure Differences...16

2.6 Information Retrieval ... 17
2.6.1 Information Retrieval Models..17

2.6.1.1 Boolean Model ..18
2.6.1.2 Vector Model ...19
2.6.1.3 Extended Boolean Model ..20

2.6.2 Information Retrieval Techniques ...21
2.6.2.1 Inverted File...21
2.6.2.2 Stop Words ..23
2.6.2.3 Stemming...23
2.6.2.4 Thesauri ...24

2.7 B-Trees... 26
2.8 Summary .. 26

III. Methodology ...28

3.1 Introduction.. 28
3.2 Development Tools .. 29

3.2.1 Call and Return Architecture ...29
3.2.2 Programming Language...29

v

Page

3.3 Hierarchical Thesaurus and Indexing Tool .. 30
3.3.1 General Approach ..30
3.3.2 Document Representation..31
3.3.3 Hierarchical Thesaurus ..31
3.3.4 Database Parsing..33
3.3.5 Indexing ...34

3.3.5.1 Document Indexing ...35
3.3.5.2 Column Headings ..36

3.4 Query Tool ... 36
3.4.1 General Approach ..36
3.4.2 Relevant Document Retrieval ..36
3.4.3 Relevant Document Ranking ...38

3.5 Design Architecture ... 38
3.5.1 Schema Integration Tool..39

3.5.1.1 Parsing ...40
3.5.1.2 Hierarchy Creation ..40
3.5.1.3 Indexing ...41

3.5.2 Query Tool ...42
3.5.2.1 Filtering ...43
3.5.2.2 Relevant Document Ranking...44

3.6 Summary .. 45

IV. Implementation and Results..46

4.1 Introduction.. 46
4.2 Design Issues.. 46

4.2.1 Memory..46
4.2.2 Speed..47

4.3 Hierarchical Thesaurus and Indexing Tool .. 48
4.3.1 Parsing Documents ..48
4.3.2 Hierarchy Thesaurus Generation ...49
4.3.3 Indexing ...49

4.4 Query Tool ... 52
4.4.1 Relevant Image Filtering ...52
4.4.2 Relevant Image Ranking..53

4.4.2.1 Vector Model ...53
4.4.2.2 Extended Boolean Model ..55

4.5 Tool Demonstration ... 55
4.5.1 Hardware and Software Platforms ...56
4.5.2 Databases ...56

4.5.2.1 Hierarchical Thesaurus Testing Databases......................................56
4.5.2.2 Queries and Relevant Documents..57

4.5.3 Evaluation Criteria ...57
4.5.3.1 Indexing Speed ..58
4.5.3.2 Query Speed ..58

 vi

Page

4.5.3.3 Relevant Document Retrieval..59
4.5.3.4 Recall / Precision Variable Explanation..59
4.5.3.5 Precision vs. Recall..60

4.5.4 Results..62
4.5.4.1 Indexing Speed ..62
4.5.4.2 Query Speed ..62
4.5.4.3 Relevant Document Retrieval..64

4.6 Summary .. 67

V. Conclusions and Future Work..68

5.1 Summary of Research .. 68
5.2 Results.. 69
5.3 Future Research Recommendations... 69

5.3.1 Relevance Feedback ..69
5.3.2 Phrase to Phrase and Phrase to Word Mapping...70
5.3.3 Web-based Application for Multiple Users ...70
5.3.4 Increased Indexing and Query Retrieval Speed...70

5.4 Summary .. 71

A. Relevant Documents Retrieved ..72

A.1 Query 1.. 72
A.2 Query 2.. 72
A.3 Query 3.. 72
A.4 Query 4.. 73

B. Query Speed ...75

B.1 Query Speed for 10,000 Documents ... 75
B.2 Query Speed for 20,000 Documents ... 75
B.3 Query Speed for 30,000 Documents ... 76
B.4 Query Speed for 40,000 Documents ... 76
B.5 Query Speed for 50,000 Documents ... 76
B.6 Query Speed for 60,000 Documents ... 77
B.7 Query Speed for 70,000 Documents ... 77
B.8 Query Speed for 80,000 Documents ... 77
B.9 Query Speed for 90,000 Documents ... 78
B.10 Summation of Query Speeds... 78

Bibliography..79

Vita .. 81

 vii

List of Figures

Page

Figure 1. VDL Metadata Query Environment ... 3

Figure 2. Query Tool 1.0 User Interface .. 5

Figure 3. Query Tool 2.0 User Interface .. 5

Figure 4. Virtual Distributed Laboratory Architecture .. 9

Figure 5. Example of a SysTables System Table... 12

Figure 6. Partial VDL Metadata Record entry ... 12

Figure 7. Conceptual View of an Inverted File.. 22

Figure 8. A Partial Hierarchy of Aircraft Words and Categories..................................... 25

Figure 9. B-Tree Logical View .. 26

Figure 10. Hierarchical Thesaurus Example .. 32

Figure 11. Pipeline Architecture Between the Two Tools ... 38

Figure 12. Available Method Calls of the Schema Integration Tool 39

Figure 13. Schema Integration Tool Method Call Chart.. 40

Figure 14. Preventing Category Cyclical Graph Example... 41

Figure 15. Available Method Calls of the Query Tool .. 43

Figure 16. Query Tool Method Call Chart... 43

Figure 17. Column Word Architecture .. 50

Figure 18. Word Architecture .. 50

Figure 19. Created Hierarchies of Synonyms and Concepts for Testing 57

Figure 20. Variable Explanation for Precision and Recall... 59

viii

Page

Figure 21. Precision-Recall Graph for Example .. 61

Figure 22. Indexing Speed with Various Levels of Caches ... 62

Figure 23. Query Speed of Various IR Models.. 63

Figure 24. Precision-Recall Graph for Query 1 ... 65

Figure 25. Precision-Recall Graph for Query 2 ... 66

Figure 26. Precision-Recall Graph for Query 3 ... 66

Figure 27. Precision-Recall Graph for Query 4 ... 67

 ix

AFIT/GCS/ENG/02M-06

Abstract

The Department of Defense (DoD) maintains thousands of Synthetic Aperture

Radar (SAR), Infrared (IR), Hyper-Spectral intelligence imagery and Electro-Optical

(EO) target signature data. These images are essential to evaluating and testing

individual algorithm methodologies and development techniques within the Automatic

Target Recognition (ATR) community. The Air Force Research Laboratory Sensors

Directorate (AFRL/SN) has proposed the Virtual Distributed Laboratory (VDL) to

maintain a central collection of the associated imagery metadata and a query mechanism

to retrieve the desired imagery. All imagery metadata is stored in relational database

format for access from agencies throughout the federal government and large civilian

universities. Each set of imagery is independently maintained at each agency’s location

along with a local copy of the associated metadata that is periodically updated and sent to

the VDL. This research focuses on applying information retrieval techniques to the

multiple heterogeneous imagery metadata databases to present users the most relevant

images based on user defined search criteria. More specifically, it defines a hierarchical

concept thesaurus development methodology to handle the complexities of heterogeneous

databases and the application of two classic information retrieval models. The results

indicate this type of thesaurus-based approach can significantly increase the precision and

recall levels of retrieving relevant documents.

x

APPLICATION OF INFORMATION RETRIEVAL

TECHNIQUES TO HETEROGENEOUS DATABASES IN THE

VIRTUAL DISTRIBUTED LABORATORY

I. Introduction

The Department of Defense (DoD) maintains thousands of Synthetic Aperture

Radar (SAR), Infrared (IR), Hyper-Spectral intelligence imagery and Electro-Optical

(EO) target signature data. These images are essential to evaluating and testing

individual algorithm methodologies and development techniques within the Automatic

Target Recognition (ATR) community. The Air Force Research Laboratory Sensors

Directorate (AFRL/SN) has proposed the Virtual Distributed Laboratory (VDL) to

maintain a central collection of the associated imagery metadata and a query mechanism

to retrieve the desired imagery. All imagery metadata is stored in relational database

format for access from agencies throughout the federal government and large civilian

universities. Each set of imagery is independently maintained at each agency’s location

along with a local copy of the associated metadata that is periodically updated and sent to

the VDL.

Previous research [Ward, 00] in VDL focused on the integration of user profiling

and user interface analysis to increase user productivity by decreasing query input time.

It proposed improvements to the latest interface based on objective interface evaluation

 1

criteria and accomplished user profiling by incorporating a server-side implementation of

user defined profiles. Additional research [Hooten, 01] conducted performance analysis

on bandwidth characterization issues. The analysis tried to determine an optimal

configuration of servers and images based on the current network configuration to reduce

bandwidth. However, this research effort was hindered by the limitations of the selected

network-modeling tool. This current research focuses on applying information retrieval

techniques to the multiple heterogeneous imagery metadata databases to present users the

most relevant images based on user defined search criteria. More specifically, it defines a

thesaurus development methodology to handle the complexities of heterogeneous

databases and the application of two classic information retrieval models.

1.1 Definition of Terms

In order to provide a better understanding of this research effort, a definition of

key terms as used in the context of this document are as follows:

• Database: Any relational database, e.g. Access, MySQL, SQL Server, etc

• Document: A record within a database consisting of entries of metadata,
corresponding to an individual image

• Model: Any information retrieval model, e.g. Boolean, Vector, Extended
Boolean, etc

1.2 VDL Problem Statement

The mission of the VDL is to facilitate cooperative research, development, and

algorithm evaluation by providing communications, information services, and

information retrieval for the entire ATR community. To this end the Air Force Research

 2

Laboratory Sensors Directorate has consolidated several heterogeneous imagery metadata

databases into a single location as part of the VDL environment. The VDL environment,

as seen in Figure 1, establishes a central library for metadata databases while allowing

participating agencies to retain local control over their images.

With the imagery repositories occupying over twenty terabytes, containing over

750,000 images, and the metadata databases currently over three gigabytes in size and

growing, a primary goal of AFRL/SN is to provide an effective means to locate and

retrieve images based on queries of associated metadata. Current query tool

implementations, discussed later, may return thousands of documents with no mechanism

for the user to distinguish between relevant documents (metadata records) and non-

relevant documents. This makes the user’s job of selecting images to evaluate ATR

algorithms very difficult. This research discusses the theory and implementation behind

a new set of VDL tools that normalize differing schemas of heterogeneous databases

while allowing a user to submit a single query to multiple databases and retrieve ranked

relevant documents using classic information retrieval techniques.

Independent Remote
Image & Metadata

RepositoriesCentral Metadata Library

Metadata

Query
Tool

Query
Tool

Multi-Metadata-Database
Query Tool

Figure 1. VDL Metadata Query Environment

 3

Previous implementations of query tools by AFRL/SN have met with limited

success. This is because of the inability to interface with more than one database at a

time due to the differing naming conventions for column headings and data values among

the databases. In addition, no ranking mechanism to distinguish between the most

relevant and least relevant documents was provided. The first query tool, AQT 1.0, was

hard-coded to work directly with the metadata database held at Wright-Patterson AFB,

OH. Programming to a specific database makes it impossible to locate relevant

documents from any other database within VDL without modifying the existing code.

The next query tool, AQT 2.0 improved upon its predecessor by adapting itself to each

database schema upon startup. This improvement made it possible to interface with

different databases, however, it was still only capable of interfacing with one database at

a time. To search multiple databases, the user must start the tool and submit a query,

direct the tool to another database and restart the tool to submit additional queries. In

both implementations, each tool submitted queries via SQL thereby eliminating any

mechanisms of ranking documents by relevance to the user’s query. In addition, the

interfaces presented users with hundreds of various combinations of searchable image

characteristics. The user interfaces of AQT 1.0 and AQT 2.0 can be seen in Figure 2 and

Figure 3, respectively.

 4

Figure 2. Query Tool 1.0 User Interface

Figure 3. Query Tool 2.0 User Interface

 5

Both of these tools can be powerful if the user knows where to look in the

interface and exactly what they are looking for. However, due to the myriad of selections

for the user to make, the interface complexities make the tool tedious to navigate and

cumbersome to use. These tools make each query a mundane exercise to narrow the

search to images with a specific set of characteristics. In addition, neither tool is robust

enough to solve the inherent difficulty of VDL’s proposed design of querying multiple

heterogeneous databases.

1.3 VDL Research Focus

The design, development, and evaluation of a new set of tools that categorize

database specific terms, column headings and data values, by assigning synonyms and is

capable of accepting a single user query, evaluating it across multiple heterogeneous

databases, and returning the most relevant documents to the user is the primary focus of

this research. For this research, the developed tools responsibilities include:

• Schema Integration Tool

o Working in a heterogeneous database environment

o Provide means to create a thesaurus through the creation of hierarchical
categories and synonyms

o Indexing documents according to information retrieval techniques

• Query Tool

o Presenting the user an easily understood interface for query submission
and results viewing

o Incorporate synonyms and categories through local query expansion

 6

o Identifying and ranking relevant documents according to existing
information retrieval models for presentation to the user

1.4 Summary

The Virtual Distributed Laboratory contains large databases of searchable

imagery metadata for evaluating and testing automated target recognition algorithms.

While the existing user interface can adapt itself to each individual database for relevant

images, it is unable to search multiple heterogeneous databases at the same time with one

user query. This new research evaluates techniques for the retrieval of relevant images

across multiple heterogeneous databases. Specifically, the primary focus of this research

is the application of a thesaurus-based approach for schema and data normalization for

multiple heterogeneous databases and the evaluation of two classic information retrieval

models, the Vector Model and Extended Boolean Model, as applied to the VDL

environment.

Chapter II of this paper provides an overview of the VDL concept, an overview of

relational database theory and schema/data integration and normalization, an introduction

to information retrieval concepts and the information retrieval models used in this

research. Chapter III explains the methodology used to develop the schema/data

normalization tool and the multi-database query tool. Chapter IV outlines the design and

implementation of each of these tools. Chapter V features the test cases and results,

analysis of results, conclusions and suggestions for future research.

 7

II. Literature Review

2.1 Introduction

The VDL concept encompasses several different technologies that are central to

understanding the complexities of retrieving relevant images from multiple

heterogeneous databases. Since this research primarily involves the Virtual Distributed

Laboratory, an overview of the VDL and its architecture is discussed in this chapter. The

role of metadata and how it can be used within the information retrieval domain is also

analyzed. Since the metadata resides in relational databases, relational database theory is

discussed along with Structured Query Language or SQL. This research places great

emphasis on multiple co-located heterogeneous databases, therefore, the complexities and

difficulties of working in that environment are presented. In addition, since the primary

focus of this research effort involves the application and evaluation of information

retrieval models to retrieve and rank relevant documents, the role information retrieval

concepts and models play is vitally important and is therefore covered in this literature

review. Three information retrieval models, the Boolean, Extended Boolean, and Vector

Models are discussed in detail to provide a better understanding of the differing

approaches to ranking relevant documents. Since the word synonyms and concept

hierarchy must be maintained in persistence storage, a disk-based B+ Tree data structure

is explored to discover its advantages and disadvantages and is the final topic in this

literature review.

 8

2.2 VDL Overview

The Virtual Distributed Laboratory (VDL) is a DoD wide Distributed

Collaborative Development Environment (DCDE) established to facilitate cooperative

research and development within the automatic target recognition community [VDL

Marketing Slides]. It is sponsored by the Office of the Under Secretary of Defense for

Acquisition and Technology (OSD ACQ) and was created as an outgrowth of the

Defense Advanced Research Projects Agency’s (DARPA’s) Moving and Stationary

Target Acquisition and Recognition (MSTAR) program as discussed in [DARPA

Website]. The VDL architecture consists of five major components as seen in Figure 4

[VDL White Paper].

Independent
Algorithm
Evaluators

Simulation
Environments

Algorithm
Developers

DoD High -Speed N etworks

 VDL
Central
Library

Computational
Resources (MSRC’s, DC’s)

Data
Resources
(NVL, SDMS)

Resources

Figure 4. Virtual Distributed Laboratory Architecture

AFRL/SN was funded to create the On-Line central library which has grown to

consist of four major elements:

• The web-based on-line library

• Signature and Imagery Data locating tools

 9

• Topic restricted search engines

• Synchronous and asynchronous collaborative tools

Allowing users to search the imagery metadata repositories based on defined

criteria is the primary purpose of the signature and imagery data locating tools. Locating

candidate signature and imagery data is critical to the success of developing good ATR

algorithms due to the large amounts of images required to train, test, and evaluate these

algorithms.

Signature files and imagery data are stored in large repositories independently

maintained by various agencies throughout the DoD. A description of each file and

image, metadata, is stored separately from the data itself in comma separated value (.csv)

files that are periodically updated to the VDL central library. These .csv files are

imported into a relational database program (i.e. Access, MySQL, SQL Server, etc). For

this research Microsoft’s Access relational database program was used. The role of

metadata in this research and relational DBMS models are discussed in the next two

sections.

2.3 Metadata

Metadata is essentially data about the data. [Dempsey, 1997] provides a more

formal definition of metadata:

“Metadata is data associated with objects which relieves their

potential users of having to have full advance knowledge of their existence

or characteristics”

 10

For example, in a relational DBMS the schema identifies some of the metadata

such as the name of the relations, the fields or attributes of each relation, the domain of

each attribute, etc. This information is stored in special tables called system tables.

Figure 5 provides an example of a system table in a relational DBMS. This table

contains a record of each table present in the database. These records store the number of

columns of each table and each table’s primary key.

In general, metadata can be broken down into five different categories depending

on its functionality [Gilliland]:

• Administrative: Used in managing and administering information resources

• Descriptive: Used to describe or identify information resources

• Preservation: Related to the preservation management of information
resources

• Technical: Related to the level and type of use of information resources

• Use: Related to the level and type of use of information resources

The administrative and descriptive definitions of metadata most closely identify

the role of metadata as it is used in the VDL environment. The metadata contained about

each image not only contains a description of the image, but also characteristics as to how

it was acquired. Figure 6 displays a partial metadata record entry in the VDL

environment taken from the Sensors Data Management System (SDMS) database at

Wright-Patterson AFB, OH.

 11

In this example, the metadata identifies a number of defining characteristics that

describe this image:

• Image size: 22896000
• Date image was taken: 27 April 1998
• Location image was taken: Eglin AFB, FL
• Primary weapon system in image: T-72 Russian Tank
• Specific serial number of weapon system: A10

Since the metadata is imported into a relational DBMS from its .csv file format,

an overview of some basic principles behind the relational DBMS Model are discussed

next.

TABLE NAME NUMBER OF COLUMNS PRIMARY KEY
Eo_view 26 ID
Ir_view 26 ID

Sar_view 32 ID

Figure 5. Example of a SysTables System Table

FILESIZE COLLECTION_DATE SITE OBJ_TYPE_ID OBJ_SERIAL_NBR
228960000 19980427 eglin_fl T72 A10

Figure 6. Partial VDL Metadata Record entry

2.4 Relational Database Model

2.4.1 Data Storage

The Relational Database Model is the most widely used data model in the

marketplace. In the late 1960s at IBM Research, Dr. E.F. Codd established the

foundation for relational database theory. The Relational Model is based on the concept

of a collection of tables in which all data is stored. These tables represent data as a

 12

collection of relations where columns are attributes and rows represent entities [Codd,

1970]. Each column name in a table must be unique and all attributes of an entity, when

taken together, represent a “key” that uniquely identifies that entity.

A RDBMS is based on the mathematical notions of Relational Algebra and

Relational Calculus. Relational Algebra provides a collection of operations to manipulate

queries through the use of set operations (union, intersection, etc.) and pure database

operations (select, join, etc.). A Relational Calculus is a formal query language that

allows users to simply write a single declarative expression instead of having to write a

sequence of relational algebra operations.

A RDBMS can have varying degrees of performance based on its level of

normalization. Database normalization is the process of efficiently organizing data in a

database. The two goals of this process are to eliminate redundant data and ensure data

dependencies make sense [Silberschatz, 02]. In essence, a higher order of normalization

will reduce the amount of storage a database consumes and ensure the logical storage of

data. There are generally five levels of normalization accepted throughout the database

community. These are referred to as normal forms and are numbered from one (the

lowest form of normalization, referred to as first normal form or 1NF) through five (fifth

normal form or 5NF). Below are guidelines to achieve a particular normal form for a

given database. Since most applications do not need to be normalized beyond third

normal form, the requirements for fourth normal form and fifth normal form are not

shown.

 13

 First Normal Form: Eliminate duplicate columns from the same table as
well as create separate tables for each group of related data and identify each
row with a primary key.

 Second Normal Form: Remove subsets of data that apply to multiple rows
of a table and place them in separate tables. Also, create relationships
between these new tables and their predecessors through the use of foreign
keys.

 Third Normal Form: Remove columns that are independent of the primary
key.

2.4.2 Data Access and Manipulation

Structured Query Language (SQL) is the most common query language used to

manipulate data and retrieve records contained in the relational database model. The

SQL commonly referred to today was established by the American National Standards

Institute (ANSI) and the (International Standards Organization (ISO) in 1987 and was an

outgrowth of a series of relational model query languages developed as part of the

System R project [Worsley, 01]. SQL is both a Data Definition Language (DDL) and a

Data Manipulation Language (DML). As a DDL, it allows an administrator or designer

to define tables, create views, etc. It also provides for integrity constraints and access

rights specifications. As a DML, it allows users to manipulate data and retrieve

information through the use of relational algebra and relational calculus. As a

consequence, in the information retrieval domain, SQL is unable to determine a degree of

relevance for a user’s query. This is due to its reliance of set theory and Boolean

operators.

 14

2.5 Heterogeneous Databases

The VDL On-Line Central Library of metadata is composed of multiple

heterogeneous databases. A group of databases are considered to be heterogeneous if one

or more of the following differences exist between them: schema differences, identical

data with different name, different data with same name, and unit of measure differences.

Each of these areas is discussed below.

2.5.1 Schema Differences

A database schema is essentially the logical design of the database. Entries into

the database must conform to the database’s schema. Typically, when working with two

or more databases, their schemas will not conform to one another. For example, in one

database an individuals weight may be entered as an integer, whereas in another, weight

may be entered as a floating number. This can cause problems trying to retrieve data

from each of the databases with the same query expression. Therefore, special

procedures must be developed to retrieve data from these multiple sources.

2.5.2 Identical Data With Different Name

Having multiple databases that contain identical data with different names is

another problem within heterogeneous databases. For instance, one database may contain

the column value called “IMAGE_DESCRIPTION,” that is used to describe the contents

of an image. Yet, in another database, describing an image is placed under a column

named “IMAGE_SYNOPSIS.” Multiple databases may also have instances where one

column contains the desired information, while another database contains the information

 15

spread across multiple columns. In both instances, to retrieve data from these databases,

some form of mapping between columns must be accomplished. This problem is not

limited to column headings, it can also appear in the data values themselves.

2.5.3 Different Data With Same Name

Different data with the same name occurs when data that has different meaning

appears in multiple databases having the same reference name. When dealing with

information retrieval this can cause more non-relevant documents to be returned. This is

because there is no manner to distinguish which data is relevant based on the index term

in the query. However, this can be less of a problem, if the information retrieval system

supports relevance feedback from the user as to which documents were relevant to the

submitted query.

2.5.4 Unit Of Measure Differences

Unit of measure differences occur when databases determine their data values in

different manners. For instance, two databases could have two identical schemas where a

column named “Weight” is expecting a float value. However, Database A measures

weight in pounds, where Database B measures weight in kilograms. To effectively

retrieve information from both databases, some conversion formulas must be adopted to

map between various databases.

 16

2.6 Information Retrieval

Information retrieval (IR) is the study of information items in regards to their

representation, storage, organization, and access [Salton, 83]. Most of the time IR deals

with information in the textual domain, however, it may also involve spoken language,

multimedia formats, etc. The main focus of IR is to provide the end user the most

relevant information based on some given guidelines. There are two different methods of

information retrieval: ad hoc and filtering. The ad hoc method is the most common form

of information retrieval. An information retrieval system is deemed to be ad hoc if new

queries are being submitted to the system while the document collection remains

relatively the same. Filtering, on the hand, occurs when the queries remain relatively the

same, while new documents enter the collection. In both systems, the results can be

presented to the users in a ranked format based on some relevance score. However, this

ranking mechanism is rarely used in a filtering system [Baeza-Yates, 1999]. Many

different models and techniques can be used to return and rank relevant documents to the

user. Some of these models and techniques are discussed here.

2.6.1 Information Retrieval Models

There are over a dozen information retrieval models and variations, however, only

three are discussed below. Before this discussion, however, a brief discussion of the four

characteristics of an information retrieval model is presented as found in [Baeza-Yates,

1999]:

• D is a set of documents in a given collection

 17

• Q is the set of query terms from the user

• F is the framework for modeling queries, documents, and their relationships

• R(qi,dj) is the ranking function which associates how well a document relates
to a given query

Each IR model views the documents and/or queries in a different manner. In the

next few sections, a detailed discussion of the most common IR model, the Boolean

Model, is presented, along with the two models that were implemented in this research,

the Vector Model and the Extended Boolean Model.

2.6.1.1 Boolean Model

The Boolean Model is the simplest information retrieval model where queries are

specified as Boolean expressions. It uses set theory and Boolean algebra to determine

whether a document is relevant or not. Queries consist of index terms separated by the

words and, or, and not. The Boolean model looks at individual index terms and assigns a

term weight of (0, 1) based on whether it appears in a document. The ranking of a

document is accomplished by calculating the similarity of each document to the query

based on each index term weight. A document is deemed relevant only if sim(dj, q) = 1.

However, with this easy implementation and understanding comes some major

drawbacks. First, the documents are either relevant or non-relevant, with no partial

matches, making the comparison of relevance between documents very difficult. Next, is

the difficulty to express queries as Boolean expressions because most users assume the

everyday English semantics of AND and OR rather than their logical equivalence. In the

 18

end, the Boolean approach of exact matching can either return too few or too many

documents to the user.

2.6.1.2 Vector Model

The Vector model is a framework in which a degree of similarity of a document

to a query can be calculated. The weighting of index terms is no longer binary, which

allows partial match consideration. The degree of similarity acts as the relevance score

of a document – the higher, the better.

The degree of similarity for a document is calculated by first calculating the

normalized frequency of a term in a given document:

jii

ji

freq
freq

jfi
,

,

max
, =

Where, freqi,j = raw frequency of term ki in docj and maxi freqi,j is the maximum

freq. of all terms in docj

Next, calculate the inverse document frequency, idf, of term ki:

i
i n

Nidf log=

Where, N = total number of docs in the collection and ni = number of docs index

term ki appears

Then multiply the two together to calculate the term-weight for each ki in docj

ijiji idffw ∗= ,,

 19

Further, the cosine of the angle between the query and each document is

calculated by the following:

sim(dj, q) =
qd
qd

j

j

×
• =

∑∑

∑

==

=

×

×

t

i

iq

t

i

ij

t

i
iqij

ww

ww

1

2

1

2

1

Where t = vector dimension

2.6.1.3 Extended Boolean Model

The Extended Boolean model is a compromise between the Boolean and Vector

models. In the Extended Boolean model, query term weights are assumed to be between

0 and 1, possibly by using the following formula:

ii

x
jxjx idf

idffw
max,, ∗=

Given two index terms the sim(qor, d) and the sim(qand, d) can be calculated.

2
),(

22 yxdqsim or
+=

2
)1()1(1),(

22 yxdqsim and
−+−−=

Where x = wx,j and y = wy,j

Obviously, many queries have more than two key terms, therefore a

generalization of the above formulas as been adopted called the p-norm model where 1 ≤

 20

p ≤ ∞. The value of p must be defined at query time. With this in mind the query-

document similarities can now be calculated as follows:

pp
m

pp

jor m
xxxdqsim

1

21 ...),(

 +++=

pp
m

pp

and
m

xxx
dqsim

1

21)1(...)1()1(
1),(

 −++−+−
−=

It can be shown that when p = 1, the above formulas are similar to the Vector

model and when p = ∞, they are similar to the Boolean model. Therefore, by varying p

between 1 and ∞, the behavior of the Extended Boolean model can be more like the

Vector or Boolean model respectively.

2.6.2 Information Retrieval Techniques

2.6.2.1 Inverted File

In the past many information retrieval systems used a direct file organization that

stored individual files in some predetermined order. When a search request was

submitted, it involved searching the full text of each document in the collection. This

approach can be an excellent choice when performing batch processing of queries since

only one entire scan of the collection would be required. However, there is a major

drawback to the direct file approach. In most information retrieval systems, queries are

submitted one at a time, so an entire scan of the documents for each query can be quite

slow.

 21

When queries are submitted one at a time, the use of some indexing structure to

represent the document collection is more appropriate. There are many different methods

to create the index. Two of the more well-known methods are inverted files and

signature files. However, [Zobel, 98] states that inverted files are superior to signature

files because of less space requirements, providing faster query evaluation, and providing

greater functionality. Inverted files are a file organization where the keywords are

indexed with a reference to each document the keyword appears in, as seen in Figure 7.

As seen in Figure 7, the word “inverted” appears in three documents within the

collection (Documents: 1, 3, and 6). The document key is not the only information that

can be stored with each index term. As we will see later, storing the number of times the

word appears in the document will also be useful. The benefit of the inverted file is that

it is only necessary to look at documents that include the individual index terms that are

contained in the query, resulting in a quicker query response time. However, in the

worst-case scenario, indexing every word in the collection can result in an index as large

as the collection itself. Two approaches are now discussed that can help reduce the index

size.

inverted

information

retrieval

files 3

4

5

6

3

21

2

631inverted

information

retrieval

files 3

4

5

6

3

21

2

631

Figure 7. Conceptual View of an Inverted File

 22

2.6.2.2 Stop Words

Stop words are words that appear in many of the documents within the collection.

Words like ‘the’, ‘and’, ‘a’ etc. will likely appear in every document. Thus, the ability of

these words to discriminate between documents is impossible. Therefore, removal of

these words from the index can reduce the index size considerably. In addition to articles

and prepositions, stop words can be generated from the index terms within the index

itself. So cutoff point can be established (i.e. a word appears in more than two-thirds of

the documents) to ignore the word, should it be submitted in a query. However, removal

from the index can create problems in the future. For instance, more documents are

added to the collection, not containing the current generated stop words. If enough

documents are added, then the stop words become more relevant and are no longer stop

words and should be included in the query.

2.6.2.3 Stemming

Stemming is another approach to reduce the size of the index. It is the process of

stripping a word of prefixes and suffixes to get to its root. Only the root is stored in the

index along with the document keys of the all the variations of the words in the

collection. For example, the words, psychiatrist, psychiatry, psychiatric, psychology, and

many other terms reduce to form PSYCH*. In addition to reducing the index size,

stemming is also used to improve recall by generalizing over word variants [Riloff, 95].

However, experiments in the use of stemming by [Harman, 91] and [Krovetz, 93] have

produced mixed results. There is a number of ways to strip the prefixes and suffixes

 23

from words. One approach is to remove suffixes is to remove only pre-selected ones

determined before indexing; the other is to remove a fixed number of characters from the

end of the word. The goal is to remove suffixes to form reasonable recognizable terms.

For example, “ing” would be removed from the word “indexing,” but not from the word

“king.” Removing prefixes can be reduced to suffix truncation, if the words are indexed

in the correct manner. One way to accomplish this is to index the words backwards. For

example, the word “antisymmetry” would be entered as “yrtemmysitna.” However, to

index words that contain both prefixes and suffixes, the words must be indexed forwards

and backwards [Salton, 89].

2.6.2.4 Thesauri

One of the main issues in information retrieval is the language variability between

authors and users [Salton, 71]. This problem occurs when there is a word-mismatch

between the words contained in the document collection and the user’s query. This

problem tends to be less pronounced as the query gets longer. However, in most

applications queries tend to be only a few words. For example, [Croft, 95] states that

queries on the World-Wide Web tend to be only two words on average. The most

common approach to alleviate this problem is through the use of a thesaurus. A thesaurus

or “synonym dictionary” can replace index terms with words of the same meaning.

Many different methods of thesaurus creation have been tried over the last three decades

and can be grouped into three general categories [Mandala, 99]. Thesauri are either

generated by hand or automatically through a co-occurrence based method or a head-

 24

modifier method. Thesaurus use helps alleviate the word-mismatch by expanding the

user’s query by adding words that may mean the same to the query. However, the

increase in retrieval performance can depend on the thesaurus and IR system pairing or

the thesaurus alone. Constructing a thesaurus in a given subject area can be

accomplished automatically, but is best accomplished manually through a group of

experts [Salton, 89]. In addition to storing synonyms, a hierarchical thesaurus on

concepts can be constructed to broaden or narrow a search request. An example of a

hierarchical thesaurus can be seen in Figure 8 below.

[Salton, 71] states that broadening through parents or narrowing through children,

can improve retrieval performance for certain recall levels, however, a standard thesaurus

alone produces better results. This is because a query expansion using a hierarchy can

crystallize the meaning of a poorly stated query and the change in the direction caused by

incorporating a hierarchy can be too violent.

Aircraft

BombersFighters PropellerJets

Military Aircraft Commercial Aircraft

F-15 F-15 B-52 B-2

Aircraft

BombersFighters PropellerJets

Military Aircraft Commercial Aircraft

F-15 F-15 B-52 B-2

Figure 8. A Partial Hierarchy of Aircraft Words and Categories

 25

2.7 B-Trees

The index of the document collection must be stored in persistent memory for use

at later times. B-Trees are balanced search tree data structures that minimize the time of

disk I/O operations [Cormen, 90]. The logical view of a B-Tree can be seen below in

Figure 9. This figure shows that reaching any letter in the alphabet will never take longer

than two reads. Whereas, in a strict binary tree reaching some letters could take as many

as five reads, thus causing the program using the tree to wait on I/O.

The size of the inverted file can grow very large, however, as more documents are

added to the collection the number of index terms in the file grows slowly. This is due to

Heap’s Law where it states that a vocabulary of size n words is of size V = Knβ = O(nβ).

Normally, K is between ten and one hundred and β is between zero and one. Values of K

and β depend on the size of the text, however, an experiment on the TREC-2 collections

demonstrated that the vocabulary grows in proportion to the text size, close to its square

root.

Y•• Z •G•• H•

U•• X•
S •• T •J •• K•

L •• O•
P •• Q•M•• N• V•• W•

I •• R •

A•• B • D•• E •

C •• F •
Y•• Z •Y•• Z •G•• H•G•• H•

U•• X•U•• X•
S •• T •S •• T •J •• K•J •• K•

L •• O•L •• O•
P •• Q•P •• Q•M•• N•M•• N• V•• W•V•• W•

I •• R •I •• R •

A•• B •A•• B • D•• E •D•• E •

C •• F •C •• F •

Figure 9. B-Tree Logical View

2.8 Summary

This chapter presented a review of the various technologies that form the

cornerstone of this research. First the overall structure of the VDL concept was

 26

examined, followed by definition of metadata and its role in this research. Next, an

introduction to relational database theory and a brief synopsis of the capabilities and

drawbacks of SQL is presented. A brief discussion follows of heterogeneous databases

and the hurdles to overcome to retrieve information from multiple heterogeneous

databases. An introduction to information retrieval, its few retrieval models, and some

simple techniques are discussed next. This chapter concludes with an overview of the

composite pattern and a review of B+ Trees. In the next chapter, the methodology used

to incorporate these technologies to retrieve relevant images from the VDL On-Line

Library is presented.

 27

III. Methodology

3.1 Introduction

This chapter defines the methodology used to develop an image retrieval system

capable of providing users an effective means to query and retrieve images in order of

relevance from metadata contained with multiple heterogeneous relational databases.

Currently, there is no mechanism within the VDL environment to map between

the heterogeneous databases. This includes the database schema and data values within

the database. The approach taken is to incorporate the use of a hierarchical thesaurus,

where a global schema and data values can be developed to perform query expansion to

include words that appear across more documents within the collection. This research

develops two tools, that when working together can develop the hierarchical thesaurus

and use the thesaurus to retrieve relevant documents from the databases.

This chapter begins with an overview of the tools used to perform the analysis,

design, and implementation of the Schema Integration Tool and the Query Tool. This is

followed with a discussion of the general approach used in the Schema Integration Tool.

Here, the concepts of document representation, database normalization, database parsing

and indexing are discussed. Following this is a discussion of the methodology used to

develop the Query Tool with regards to filtering and relevant document retrieval. The

chapter concludes with the discussion of the design of the Schema Integration Tool

followed by a similar discussion of the design of the Query Tool.

 28

3.2 Development Tools

The development of the Schema Integration Tool and the Query Tool utilizes a

call and return program architecture using the Java programming language. This section

describes the capabilities and advantages of each.

3.2.1 Call and Return Architecture

The Call and Return programming architecture is a type of structural

programming model that provides the programmer a structure that is easy to modify and

scale [Pressman, 01]. With this architecture there is a “main” program method from

which additional methods may be called. These additional methods may in turn call

other methods to accomplish their goal. Eventually, the program control is returned to

this main function so that additional method calls may be made.

3.2.2 Programming Language

The Java programming language is used as the implementation language for the

Query and Retrieval Tool and the Schema Integration Tool. Java was developed by Sun

Microsystems to be an easy to understand programming language that provides many

benefits [Sun Microsystems]:

 Platform Independence: Any Java program can be compiled and executed
on any Java Virtual Machine (JVM) regardless of the underlying hardware or
operating system.

 Exception Handling: Java supports throwing and catching exceptions at the
hardware and program level.

 29

 JDBC Interfacing: Java provides the JDBC database interface to make
simple database tasks, such as establishing a connection, querying, and
retrieving results very easy.

 JFC/Swing: Java provides an easy manner in which to build Graphical User
Interfaces (GUI), through its Java Foundation Classes (JFC). Within the JFC,
developers can incorporate everything from buttons to split panes to tables
into their GUIs.

With these features, Java provides a powerful set of programming tools to

facilitate the implementation of GUIs to access databases through the object-oriented

programming paradigm. This is all accomplished while having the capability to be

compiled and executed on any system containing a JVM.

At the time of this research, Sun Microsystems’ most recent version of the Java

language is the Java Development Kit 1.3 (JDK 1.3) and is the one utilized in this

research for the implementation of the Query and Retrieval Tool and the Hierarchical

Thesaurus Creation and Indexing Tool.

To facilitate the development process, JBuilder was the environment used to

implement the design of tools in this research. JBuilder is a Java development

environment produced by the Borland Software Corporation that provides a point and

click GUI building environment and excellent code generation facilities.

3.3 Hierarchical Thesaurus and Indexing Tool

3.3.1 General Approach

This section discusses the general approach used to develop the Schema

Integration Tool used in this research. First the approach used to represent documents is

 30

presented, followed by the approach used to normalize data values and column headings.

Finally, this section concludes with a discussion of the Schema Integration Tool

functions.

3.3.2 Document Representation

To retrieve relevant images within a relational database using text-based

information retrieval techniques, the Schema Integration Tool uses a unique document

definition strategy. Since each record in a relational database is assumed to be unique,

each record is treated as an individual document. Also, the entries of the record describe

the attributes of a single image, much like words of a textual document describe the

document itself.

3.3.3 Hierarchical Thesaurus

Differing schemas and data values are the major hurdles to overcome to retrieve

items from heterogeneous databases. The Schema Integration Tool uses a hierarchical

thesaurus to alleviate the problems caused by this type of environment. Using a

hierarchical thesaurus not only allows users to search for documents without knowing the

exact vocabulary used, but also allows them to search for higher-level concepts that may

not appear textually in a document.

To provide the VDL administrator a basis to create higher-level concepts the idea

of a category is introduced. A category is an object that can contain words, and other

categories. It has a one-to-many relationship with words and a many-to-many

relationship with other categories. This means that each category has the potential to

 31

contain many words, however, words may only be assigned to one category. These

relationships can be seen in Figure 10. The many-to-many relationship means that a

category may be contained within other multiple categories, thus, creating a hierarchy of

more general concepts. Figure 10 shows that F_16 and F16 are individual words that

have the same meaning. However, a category named F-16 has been created to group

these words together as synonyms. At this level, the category follows the same principles

as a thesaurus. If a user entered a word belonging to a category, the query would be

expanded to include the other words that were maintained in the same category. Without

this approach, relevant documents would go unnoticed due to the differences in

vocabulary between the query and the words in the actual document. However, the

hierarchical thesaurus takes the concept of a standard thesaurus one step further. Also

seen in Figure 10, the F-16 category has been assigned to multiple higher-level

categories. These categories serve as higher-level concepts of the individual words. This

allows the user to define a more general concept during query time, even if the concept

words are not found in the document itself.

F_16 F16

F-16

US FightersIsraeli Fighters

WordsCategories

F_16 F16

F-16

US FightersIsraeli Fighters

WordsCategories

Figure 10. Hierarchical Thesaurus Example

 32

By selecting concepts higher in hierarchy of the thesaurus, users may query for more

general concepts such as “tanks” without the word actually appearing in the document.

As the user moves down the hierarchy, their queries become more and more specific until

they reach a specific word.

As discussed in Chapter 2, stemming is another method to retrieve possibly more

relevant documents and can be accomplished using the hierarchical thesaurus. The

thesaurus may contain a category based on the root of a word, such as “like.” Variations

of this word may include “unlike” and “likely.” Words with prefixes and suffixes may be

assigned as synonyms to one another under the root word category. Users may use these

methods to search documents without regard to the verb tense (past, present, future) the

document was written in. However, this stemming approach does not save any index

space, unlike normal stemming where only the root word is stored and stemming

algorithms are used to recreate words based on the root.

To be able to assign words as synonyms through the use of categories, each

document must be parsed to determine what words are contained within it. The approach

behind parsing a document used in this research is discussed in the next section.

3.3.4 Database Parsing

As discussed previously, a document is considered to be a single record in a

relational database consisting of all columns. Parsing a database consist of finding all

data values, excluding numerical values, and presenting them to the VDL administrator

for possible inclusion to a category.

 33

However, not all words may be included. Some stop words (i.e. “a”, “and”, “the”,

etc.) may not be included at the discretion of the VDL administrator. Note however, that

the use of the stereotypical stop words are not recommended due to the type of object the

documents in this research are describing. In imagery descriptions, the use of

prepositions as stop words can significantly reduce the level of recall for a system [Riloff,

95]. This is due to their precise descriptive value. For example, if a user entered a query

to see images with all “tanks on a bridge.” If the standard practice of removing

prepositions is followed, then the query terms are reduced to “tank” and “bridge.” This

approach treats the images of “tanks on a bridge” and “tanks next to a bridge” as

equivalent. Obviously, this is not what the user intended. If the preposition “of” were

indexed then the documents containing the words “tank”, “bridge” and “of” would be

scored higher since “of” would add extra weight to the documents than those without it.

For this reason, prepositions are not considered stop words and should be indexed. Word

weights are an integral part of any textual based information retrieval system. The

approach used to set individual word weights used in this research is discussed in the next

section.

3.3.5 Indexing

The idea behind indexing is to track which words appear in which documents

along with their frequency within individual documents and throughout the collection.

The indexing approach used in this research is accomplished through two-steps. First,

each document is indexed similar to an inverted file. The next step is to index the column

 34

headings as to which words appear in their column. These two approaches are discussed

in the following two sections.

3.3.5.1 Document Indexing

Document indexing follows the same general principles as parsing the database to

find individual words, with two exceptions. First, when the initial set of words are

presented to the VDL administrator; multiple instances of the same words are ignored.

However, when a document is indexed, as words appear more often throughout the

collection, their occurrence list is updated as to which documents they are contained in

and their frequency of occurrence. This information is used to set the idf of individual

words that are used in the two information retrieval models, Vector and Extended

Boolean, as discussed in Chapter 2. However, using a thesaurus creates problems when

calculating the idf of words and the maximum word frequency in a document. Words

having the same meaning, through the assignment to the same category should have the

same idf factor since they are treated as being identical. Recall that:

i
i n

Nidf log=

Where, N = total number of docs in the collection and ni = number of docs index term ki

appears.

Setting the idf of words within the same category requires an additional pass

through the list of words to determine which words are assigned to categories. If a word

 35

is assigned to a category, then the idf of the word is the summation of the number of

documents it and its synonyms appear in.

3.3.5.2 Column Headings

The idea of required criteria that a document must contain before it can be

deemed even partially relevant is also important. This is similar to the idea of SQL and

the Boolean model in information retrieval. With this approach only documents that

meet all criteria are scored for relevance. This is accomplished through indexing the

individual columns of a database. When a word or number is found by the parser then

the occurrence list of the column to which it is assigned is updated with that value and the

documents in which it appears. In the Query Tool, the user may select criteria that has

been indexed in this manner as a way to filter unwanted documents that do not meet the

criteria.

3.4 Query Tool

3.4.1 General Approach

This section discusses the general approach used to develop Query Tool used in

this research. The approach used to retrieve relevant documents is presented first,

followed by the approach used to rank relevant documents.

3.4.2 Relevant Document Retrieval

Relevant document retrieval is the process of retrieving documents the user may

be interested in. The manner in which this research determines relevant documents is

 36

accomplished in two steps. With the first step, the user may reduce the number of

documents retrieved by requiring that certain criteria be met in the description of the

image, regardless of its location within the database. This approach is simply an

implementation of filtering similar to the Boolean information retrieval model. In the

Boolean model, only documents meeting all criteria are returned as relevant documents.

However, as with Boolean model, no ranking of the documents is provided, and therefore

all returned documents from this filtering are equally relevant. If a user enters only

filtering criteria and no query terms then the user has essentially issued a Boolean query

with the AND operator between each criteria, and will cause the above situation to occur.

As one would expect, the collection of relevant documents becomes smaller as more

mandatory criteria is placed on the documents that must be met.

If the user has entered a series of keywords as a query, then only the collection of

documents meeting the criteria are ranked by relevance. If no query is provided then all

documents are considered relevant that meet the filtering criteria are relevant.

If a user has entered a query, then the next step involves the parsing the user’s

query to determine keywords by which to evaluate the documents. At this point, the

query is expanded through the use of the hierarchical thesaurus. If any of the query

words are members of categories, then the other words within the category are included

in the query. Also, if a category is entered as a query word, then all words below it are

also included, regardless of their location in the lower sub-tree. Each of the remainder of

the relevant documents must contain at least one of the keywords in the query to remain.

If no keyword in the query is found in the document, then it is removed from the relevant

 37

document set. This process of elimination of documents that have no relevance to either

the user’s criteria or the keywords in the query reduces the time to return the relevant

documents to the user.

Once the process of determining possible relevant documents is completed the

documents are individually ranked by the methods presented in the next section.

3.4.3 Relevant Document Ranking

Once the set of relevant documents has been determined and a query has been

issued, the documents are ranked according to one of the two algorithms discussed in

Chapter 2. Both the Vector and Extended Boolean model provide a natural ranking of the

documents according to their relevance to the query and document criteria.

3.5 Design Architecture

In the following two sections the designs of Schema Integration Tool and the

Query Tool are presented. Figure 11 provides an overview of how these tools are used

together to accomplish the goal of retrieving relevant documents. As the figure shows,

Index:
Inverted

File

Create/Update Read Index:
Inverted

File

Create/Update Read

Schema Integration Tool Query Tool

Figure 11. Pipeline Architecture Between the Two Tools

 38

The Schema Integration Tool produces and updates the inverted file based on the words

found in the database documents and the assignment of words to categories and the

hierarchy of categories. The Query Tool uses the inverted file to provide the user a way

to retrieve documents ranked by their relevance to the submitted criteria and query. As

one would expect, the performance of the Query Tool can only be as good as the inverted

file it is based on. In the following sections, the designs of these two tools are covered in

detail.

3.5.1 Schema Integration Tool

The architecture of the Schema Integration Tool is written using a functional

paradigm comprised of thirty-two method calls as seen in Figure 12. The call structure

can be seen in Figure 13. The major functional pieces that are cutout are explained in the

following sections.

1 jbInit() 17 RemoveColumnCategory()
2 QuitProgram() 18 DisplayAddSuperCategoryPopup()
3 ShowConfirm() 19 DisplayAddSuperColumnCategoryPopup()
4 InitialConnection() 20 DisplayRemoveSuperCategoryPopup()
5 ChangeConnection() 21 DisplayRemoveSuperColumnCategoryPopup()
6 ReadCategoryInformation() 22 AddSuperCategory()
7 ReadColumnCategoryInformation() 23 AddSuperColumnCategory()
8 ResetObjectsToAssignList() 24 RecurseDown()
9 ResetColumnObjectsToAssignList() 25 RemoveSuperCategory()

10 ResetSubCategoriesList() 26 RemoveSuperColumnCategory()
11 ResetSubColumnCategoriesList() 27 GetObjectsToAssign()
12 ResetSuperCategoriesList() 28 IndexDatabase()
13 ResetSuperColumnCategoriesList() 29 SetSynonyms()
14 AddCategory() 30 SetWordIDF()
15 AddColumnCategory() 31 SetCategoryInfo()
16 RemoveCategory() 32 RecurseFunction()

Figure 12. Available Method Calls of the Schema Integration Tool

 39

1

23 4 5

6 7
8 9

10 11

12 13

14 16 17 18 1920 21
22 23

24
25 2627

15
28
30 31

32
29 Parsing

Indexing
Hierarchy
Creation

1

23 4 5

6 7
8 9

10 11

12 13

14 16 17 18 1920 21
22 23

24
25 2627

15
28
30 31

32
29 Parsing

Indexing
Hierarchy
Creation

Figure 13. Schema Integration Tool Method Call Chart

3.5.1.1 Parsing

Once a connection to a database is established, the GetObjectsToAssign() method

is responsible for parsing the current database. The database parsing consists of two

main functions. First the GetObjectsToAssign() method retrieves the individual column

headings of the relational database. It is also responsible for extracting each unique word

(i.e. all non-numeric and non-null values) and presenting them to the user for possible

assignment to categories. Once the column headings and the distinct words have been

determined, then the GetObjectsToAssign() method resets the graphical user interface.

3.5.1.2 Hierarchy Creation

The hierarchical thesaurus consists of two distinct hierarchies, one for column

headings and one for data values within a database. The manner in which these two

distinct hierarchies are created is accomplished in the same manner. Assigning a

category to a word is relatively easy: if a word has not been assigned a category, then

update the word with the category it is assigned to and add the word to the list of children

 40

of the category. If a word has been assigned to a category previously, then reassign it to

the new category, updating the word, the new category, and the old category about the

change. Additionally, adding and removing categories are relatively easy. When

removing a category, only its children and parents within the hierarchy must be updated

to reflect the removal of the category. However, it is the assignment of one category as a

parent to another category that can be somewhat tricky. When adding a parent category

certain rules must apply. The most important is that the new addition may not create a

cycle in the graph, meaning the category to add as a parent may not already be a

descendent of the child category. In Figure 14, it can be seen that the category “Israeli”

could not be assigned as a parent to the “Fighters” category because this would create a

cyclical graph. However, also seen in Figure 14, a category may also have a sibling as its

parent in that the category F-16 may be a child under “Israeli”, but is may also be a child

directly under the “Fighters” category.

 Fighters Fighters

Israeli

F-16

Figure 14. Preventing Category Cyclical Graph Example

3.5.1.3 Indexing

The IndexDatabase() method is responsible for re-parsing the database and setting

word weights based on the occurrence in the document collection. This method’s

primary responsibility is to parse and update each word’s and each column’s occurrence

 41

list as to which document it appears in and frequency of occurrence. It uses three

additional utility functions to inform each word of its synonyms, its idf weight, and

updating the categories with all relevant words and documents that are located as children

below it in the hierarchy. Once the database has been parsed, then the words are iterated

over to update their synonym lists by looking at their assigned category and the additional

words assigned to the same category. Computing the idf, as discussed earlier, is the

process of determining the number of distinct documents a word or one of its synonyms

is located within. Since each category may have both categories and words as children,

determining the relevant words and documents in its sub-tree requires the use of a

recursive function to do a depth-first search to retrieve this information. This approach

requires the storage of repetitive data, however, it is used to increase the speed of the

query tool by not having to perform this operation at query time.

It has been noted that not all columns need to be searched. Therefore, in an effort

to increase indexing speed, only columns selected by the VDL administrator are indexed.

This approach not only increases speed, it also reduces the size of the disk-based B-Tree,

therefore saving hard disk space. In addition, a reduction in the B-Tree size decreases

lookups to retrieve individual words, thus increasing the speed of the Query Tool. A

discussion of the architecture of the Query Tool is provided in the next section.

3.5.2 Query Tool

The architecture of the Query Tool is also written using a functional paradigm

comprised of thirteen method calls as seen in Figure 15. The call structure for the Query

 42

Tool can be seen in Figure 15. The BasicSearch() method is the primary method within

the Query Tool and its responsibilities and additional method calls are discussed in the

following sections.

1 main() 8 VectorModel()
2 DisplayCategories() 9 ExtendedBooleanModel()
3 DisplayDocInfo() 10 RecurseEquals()
4 AddFilter() 11 RecurseBoth()
5 RemoveFilter() 12 RecurseGreater()
6 SetBasicQueryInterface() 13 RecurseLesser()
7 BasicSearch()

Figure 15. Available Method Calls of the Query Tool

1
72 43

98

65

10 11 12 13

1
72 43

98

65

10 11 12 13

Figure 16. Query Tool Method Call Chart

3.5.2.1 Filtering

The first half of the BasicSearch() method involves filtering of documents that do

not meet the specified criteria by the user. No individual column headings are displayed

to the user; only “Column Categories” are displayed. Therefore, if a column heading is

to be searchable, then it must be assigned to a higher-level category. The BasicSearch()

is responsible for parsing the user’s criteria into smaller pieces of information. This

information includes which Column Category the user has requested, and the specified

ranges to include. The filtering mechanism provides the user the ability to search for a

 43

specific range of inclusive numbers or an individual word that must be present within the

column heading. However, multiple word searching within the same column heading is

not currently implemented.

The filtering approach was selected over a pure information retrieval approach.

In a pure information retrieval approach, an algorithm would be developed to determine a

weighting factor for the criteria based on the distance from the user’s original request,

thus treating the criteria similar to a query term. This primarily deals with the instance of

where the user has selected criteria that must be equivalent to some number. This

approach could provide smaller weights as the values of the characteristics of the

documents move farther from the user defined number. However, it is generally

understood that when a user specifies that a document must meet some criteria, then any

document that does not meet any one of the specified criteria is excluded.

3.5.2.2 Relevant Document Ranking

Once the document collection has been filtered and only documents that meet the

strict criteria from the user remain, the process of ranking these documents according to

their relevance to the query can begin. This ranking is accomplished through the

selection of two classic information retrieval models (Vector and Extended Boolean).

These models provide a natural ordering of the documents in ascending order according

to their relevance. The implementation of these information retrieval models is discussed

in the next chapter.

 44

3.6 Summary

This chapter begins with an overview of the design architecture used in the

implementation of the Schema Integration Tool and the Query Tool and discusses the

advantages of using the Java programming language in this research. The Schema

Integration Tool has three general functional requirements of document representation,

and parsing and indexing the individual databases. Within the Schema Integration Tool

the VDL administrator may also develop high-level concepts of words that may be

contained in the documents and assign synonyms to standardize the data values found in

the database. This will allow the users to search for concepts and words that may not be

contained directly in the text of the documents.

The functional requirements of the Query Tool consist of permitting the user to

filter documents according to some specified criteria before beginning the ranking

process based on query terms. In addition, the Query Tool is responsible for retrieving

the documents that contain at least one query term from the subset of documents meeting

all the user’s criteria. This subset of documents is ranked via the Vector or Extended

Boolean model according to relevance. The design of the Schema Integration Tool and

Query Tool are based on a Call and Return Architecture permitting easy modifications to

the program as needed. In Chapter 4 both applications are implemented, tested, and the

results interpreted.

 45

IV. Implementation and Results

4.1 Introduction

This chapter discusses the functionality of the Hierarchical Thesaurus & Indexing

Tool and the Query Tool as implemented in this research. It begins with a discussion of

some important design issues that were encountered during the design and

implementation stages. Next, the two major functional areas that make up the

Hierarchical Thesaurus and Indexing Tool are presented. These two areas provide all the

functionality to provide hierarchy creation and document indexing. This is followed by a

discussion of the implementation of the Query Tool. Finally, a brief discussion of the

evaluation criteria is presented followed by the test cases and results.

4.2 Design Issues

During implementation, two key issues came to light and a brief discussion of

each is presented here. These areas include the speed and the amount of memory used in

creating and maintaining the indexes and hierarchies, in addition to relevant document

retrieval.

4.2.1 Memory

The amount of space taken up by the document index and categories hierarchy is

of great concern when dealing with the large volume of documents in the VDL

environment. When dealing with a small number of documents, the index and hierarchy

can be held in main memory. This approach would greatly increase the speed by which

 46

the hierarchies can be maintained and relevant documents could be retrieved. However,

as the number of documents in the collection continues to grow, it becomes increasingly

difficult to maintain these structures in memory and therefore, this approach was deemed

not feasible and was not pursued. Since the index cannot be held in main memory, a

persistent storage mechanism must be implemented to maintain a large index and

hierarchy while allowing fast access to data when needed. In addition to eliminating the

requirement to rebuild the index each time the tool is executed, persistent storage

provides a medium by which the document collection’s growth is not bounded by the

limit of main memory, but only by the amount of available disk space. Therefore, the B-

Tree data structure is the data structure of choice in this research to maintain the long-

term storage of the indexes and hierarchies. The B-Tree that was used for this research

stores nodes on individual pages on disk. If a node is larger than the page size, then it is

stored across multiple pages.

4.2.2 Speed

Speed was one of the most critical factors when developing the tools in this

research, specifically for the Query Tool. In the Hierarchical Thesaurus and Indexing

Tool, the speed at which documents are indexed is not crucial to the success of this

research, but should be considered. On the other hand, the speed at which the Query

Tool can return relevant documents should not grow proportionally to the growth of an

increased document collection size. Results of whether this was accomplished will be

seen later in the chapter.

 47

4.3 Hierarchical Thesaurus and Indexing Tool

The design of the Hierarchical Thesaurus and Indexing tool was developed with

three major functions in mind. These functions and the manner in which there are

implemented in this research are discussed in detail in the following sections.

4.3.1 Parsing Documents

Before a user can create and assign synonyms to individual words in a document

through categories, each document must be parsed to determine the unique set of words

that make up the database in the collection. For this, Java’s JDBC is used to connect to

the desired database and records are read one at a time and added to a data structure for

presentation to the user. If column values are found to contain multiple words or phrases,

these are broken down to their atomic words via a string tokenizer and also inserted into

the data structure. Only words are considered, if a data value is determined to be a

number then it is ignored. In addition to parsing documents, the parsing function is also

responsible for determining the values of the column headings and also presenting them

to the user. Once the parser has determined the set of unique words and the database

column headings, each value is sent to their respective B-Trees on disk. There are a total

of five B-Trees, one for the regular words, one for the column headings, one for word

categories, one for column categories, and also one for a unique database and table

combination identifier to be used during the indexing process. The end result of the

parsing function is two lists of words that may now be assigned to different categories.

 48

4.3.2 Hierarchy Thesaurus Generation

Categories may either be created before or after a database has been parsed.

However, assignment of words to categories may only be accomplished after the database

has been parsed. If a word has been assigned to a category from an earlier database, if a

new database is loaded and parsed and the word appears again, there is no need to

reassign the word to the same category. Although words may only be assigned to one

category, categories may be assigned to multiple categories. Once the VDL administrator

has determined the thesaurus is complete, the indexing process may begin. If a database

has been indexed prior to any changes made to the thesaurus hierarchy, there is no need

to index the database again. The indexing of the current database will handle any

additional category assignments or re-weighting of terms.

4.3.3 Indexing

Indexing the database initially begins with the parsing of documents similar to the

method discussed above, with the exception of ignoring duplicate terms and numerical

values. As stated earlier, each database and table combination within the document

collection has been assigned a unique number. This number, along with the document

key within the database, is used to create a unique document identifier to determine its

location if it is retrieved as a relevant document.

Two types of indexing take place requiring only one run through the documents in

the database. The first type of indexing that occurs is column indexing. Column

indexing is used by the Query Tool to simulate the actions of the Boolean information

 49

retrieval model. As values, including numerical, are parsed, they are inserted under the

appropriate column word along with the document identifier in which they appear. An

example of this architecture can be seen in Figure 17.

In addition, the inverted file must also be updated to include the new copy of the

word with the document identifier in which it was found for later use in the IR models

discussed below. The individual word architecture is a simplified version of the column

word architecture as the column heading is ignored and the word becomes the word

identifier and not just a value. However, numerical values are ignored. An example of

this simplified architecture can be seen in Figure 18.

Column Heading Name

T-62

mountain

89

T-72

Data Values
1000034

2000043

2000432

1000434

20000241000134

Word Name

Document IDs

Column Heading Name

T-62

mountain

89

T-72

Data Values
1000034

2000043

2000432

1000434

200002420000241000134

Word Name

Document IDs

Figure 17. Column Word Architecture

Word Value

10000342000432 1000434

Word Name

Document IDs

Word Value

10000342000432 1000434

Word Name

Document IDs

Figure 18. Word Architecture

 50

As one might expect, the occurrence list of documents in which the word and

column word values appear can grow very large as they appear in more documents. A

word with an occurrence list of any substantial length can require a significant amount of

time to load into memory. In addition, the word then must be written back out to the B-

Tree on disk. This amount of disk I/O can significantly slow down the indexing process.

Therefore, the idea of an external cache was implemented to limit the number of reads

and writes to disk. The VDL administrator determines the cache size based on the

amount of memory available on the computer on which the indexing tool resides. This is

accomplished by specifying the maximum number of documents to be indexed and held

in memory at any moment in time. A typical computer can handle at least 10,000

documents in memory at a time. Once a word is parsed, the cache is checked to see if it

has already been loaded from the B-Tree on disk. If the word is found in the cache, then

the word’s occurrence list is updated and saved back to the cache. However, if the word

is not presently in the cache, then it must be loaded from disk, updated, and saved back to

the cache. Once the number of documents has been indexed that was specified by the

VDL administrator, the entire cache is written to disk and cleared. It is written out to

disk by iterating over each word in the cache and loading the same word from the B-Tree.

The difference in the occurrence lists are updated from the word that was loaded from the

B-Tree and then written back out to disk. This significantly reduces the frequency of

writes to and from disk. The hash map data structure was selected due to its O(1) access

time to determine whether a word is present in the cache and its O(1) retrieval time to

 51

load a word from cache. Once the inverted files of words and column words have been

completed, the assignment of word weights takes place next.

Only the number of documents the word appears in versus the size of the

collection determines the word’s weights when not using a thesaurus. However, when

using a thesaurus, all words that are determined to be synonyms must contain the same

weights. Therefore, each word in the inverted file is expanded to take into account its

synonyms and the documents in which they appear. The word’s idf is calculated using

this approach, however, the occurrence lists of the words are not changed to reflect the

additional documents its synonyms may be present in.

In addition, all categories in the hierarchy also contain a listing of all words that

are contained under its sub-tree. The category also contains all documents that are in the

occurrence lists of these words. This approach saves time during the query process by

performing the necessary calculations during indexing and not during the query process.

4.4 Query Tool

The design of the Query Tool is developed with two major functions in mind.

These functions and the manner in which they are implemented in this research are

discussed in detail in the following sections.

4.4.1 Relevant Image Filtering

Relevant image filtering involves the use of the column word index that was

created to mimic the attributes of the Boolean IR Model. Users may select columns that

 52

are of interest to them. However, only column headings that have been assigned to

categories are available. In essence, the user selects a category that may contain multiple

column headings or other categories to filter through documents. Documents that do not

meet all the users’ criteria are removed from the possible relevant document set.

4.4.2 Relevant Image Ranking

Once the filtering of documents has taken place and all documents that do not

meet the user’s criteria have been removed, the remaining documents can be scored and

ranked according to their relevance. However, when using the thesaurus, the user may

expand the query by selecting a category within the hierarchy. All words in the selected

categories’ sub-tree are added to the users query. The documents that contain at least one

of the words found in the query are kept; all others are removed since their relevance

scores will be zero. If the user does not enter a query, then documents that meet the

user’s specified filtering criteria are returned with no ranking. Now there are only

documents that have at least one query term and have met the user’s criteria, the scoring

and ranking of these documents may be accomplished through the use of one of the

following algorithms.

4.4.2.1 Vector Model

The Vector model was implemented as presented in Chapter 2, with a few minor

adjustments. The Vector model’s formulas are shown below:

jii

ji
ji freq

freq
f

,

,
, max

=

 53

Where, freqi,j = raw frequency of term ki in docj and maxi freqi,j is the maximum

freq. of all terms in docj, and

i
i n

Nidf log=

Where, N = total number of docs in the collection and ni = number of docs index

term ki appears

The index term weights are calculated by multiplying the results of the two

formulas together as seen here:

ijiji idffW •= ,,

Where as the query weights were calculated using the following formula:

iqil

qi
iq n

N
freq
freq

W log*
max

*5.0
5.0

,

,

+=

One of the changes involved the simplification of the query weights. The

assumption was made that the user would only enter the query word once, therefore

reducing the query weights to the following:

iii
iq n

N
n
N

n
NW loglog*

1
5.05.0log*

1
1*5.05.0 =

 +=

 +=

In addition, the formula for the term weights were interpreted slightly differently

than in Chapter 2. This alternative approach is to only consider the maximum frequency

in a document from the query terms and not the entire document itself. The previous

 54

approach tended to give an advantage in scoring to shorter documents since longer

documents may contain more frequent words that were not contained in the user’s query.

When only considering the terms in the query, the size of the document will have less of

an influence on its score.

4.4.2.2 Extended Boolean Model

The Extended Boolean model as implemented in this research uses the P-norm

value as discussed in Chapter 2. The user has the option to select the value of p from one

to five to simulate the Vector model or to use a more Boolean approach. In addition, the

AND operation was used exclusively over the OR operation. This tends to rate

documents containing multiple words in the query higher. The formulas from Chapter 2

for the Extended Boolean AND operation are shown below:

ii

x
jxjx idf

idffw
max,, •= and,

pp
m

pp

and
m

xxx
dqsim

1

21)1(...)1()1(
1),(

 −++−+−
−=

Where x = Wi,j

4.5 Tool Demonstration

This section begins with a presentation of the hardware and software used to

develop the Hierarchical Thesaurus and Indexing Tool and the Query Tool. It also

presents an overview of the databases and queries by which these tools were tested.

 55

4.5.1 Hardware and Software Platforms

The two tools used in this research were developed in version 1.3 of the Java

programming language. The system on which these tools were tested had the following

hardware specifications:

• Intel Pentium III 550 MHz processor

• 384 MB RAM

4.5.2 Databases

The relational database used in the testing phase of this research was Microsoft

Access 2000 from the Microsoft Office 2000 suite. It provided a mechanism to transform

the .csv (comma separated) files into the desired tables with ease.

4.5.2.1 Hierarchical Thesaurus Testing Databases

The hierarchical thesaurus testing databases are comprised of three independent

databases comprised of one table each. Each table contains 25 records, or documents,

with simulated images as would be expected in the VDL environment. These documents

were contrived due to the inability to gain access to the description field of the actual

SDMS database within VDL. Each database contains an ID field to uniquely identify

each record, a description field, an object field, squint direction field, turret rotation field,

barrel elevation field, and camouflage percentage field. Figure 19 displays the

hierarchies created to test the various characteristics of the thesaurus and stemming.

Each of the three databases contains a different column heading to represent these fields.

 56

camouflage

camouflage camo camoufalged

camouflage

camouflage camo camouflaged

firedfire firing

fire

firedfire firing

fire

tree trees forest

tree

tree trees forest

tree

camouflage camouflage camouflage

camouflage

camouflage camouflage

camouflage

camouflage

camouflage

camouflage

camouflage camouflage
Words

Categories

camouflage camouflage camouflage

camouflage

camouflage camouflage

camouflage

camouflage

camouflage

camouflage

camouflage camouflage T-62 T-72 T_72

T-62

T72 T62

T-72

Tanks

M1-A

M1-A

M1_A T_62
Words

Categories

Figure 19. Created Hierarchies of Synonyms and Concepts for Testing

In addition, the primary focus of these images, T-72 and T-62 tanks are represented in

several spellings in the databases to test the thesaurus tool. Another tank, the M1-A tank

is included to test the hierarchical functionality of the thesaurus. These databases were

also written in several verb tenses to test the stemming capabilities of this hierarchical

approach.

4.5.2.2 Queries and Relevant Documents

A set of four queries was developed to simulate actual queries that could be

submitted to the system. These queries were developed based on the knowledge of the

contents of the databases. After query development, an expert user of the documents

identified relevant documents that should be returned by these tools.

4.5.3 Evaluation Criteria

The criteria used to evaluate the performance of the query tool using the inverted

file with the Hierarchical Thesaurus is discussed in the next few sections. Each of these

 57

areas cover different aspects of the tools in this research with the most emphasis placed

on the recall and precision measures.

4.5.3.1 Indexing Speed

The speed at which documents are indexed is not a truly important measure of the

performance of the overall system. However, it is an important performance measure of

the indexing tool by itself. For example, indexing a large document collection within a

database should not take days to complete. This is important because the current setup

requires the Hierarchical Thesaurus and Indexing Tool to not be in use for the Query

Tool to have access to the B-Tree data structure for the information required to score

documents.

4.5.3.2 Query Speed

The amount of time the Query Tool uses to return relevant documents is an

important statistical measure. As the number of documents in the collection continues to

grow, the amount of time to retrieve relevant documents will also grow. However, this

growth in time should not be directly proportional to the size of growth of the document

collection. Part of the solution to ensuring this does not occur was discussed previously.

That is, not to score every document in the collection, but to only score documents that

are in the occurrence list of the query words found in the inverted file. This can

significantly decrease the amount of time to query. However, since no stop word lists

were used and every word is indexed then the entire collection has the potential to be

returned as relevant.

 58

4.5.3.3 Relevant Document Retrieval

Relevant document retrieval is the most important measure of the effectiveness of

the Hierarchical Thesaurus and the Query Tool. The primary goal of any tool returning

relevant information is to put the most relevant information before the user first. When

documents are returned, the documents that are most relevant to the user should be scored

the highest and therefore be ranked higher on the returned documents list. There are two

primary measures to determine the effectiveness of a relevant document retrieval tool,

recall and precision. Each of these measures are discussed in the following sections.

4.5.3.4 Recall / Precision Variable Explanation

Figure 20 shows the Venn Diagram representation of precision and recall.

• |R| = the number of documents in the entire document collection

• |A| = the number of documents returned by the query tool

• |Ra| = the number of documents returned and also relevant

Document Collection
Relevant Docs

|R|
Answer Set

|A|

Relevant Docs
in Answer Set

|Ra|

Document Collection
Relevant Docs Answer Set

Relevant Docs
in Answer Set

|Ra|

Figure 20. Variable Explanation for Precision and Recall

 59

4.5.3.5 Precision vs. Recall

The measure of precision is a proportion of the retrieved documents that is

relevant, while recall is a proportion of the relevant material retrieved. Both formulas can

be seen below.

||
||

A
Raprecision =

||
||

R
Rarecall =

Depending on their information needs, users may require a high recall, that is, the

retrieval of any document that might be of interest. At other times, users may require a

high precision, meaning the rejection of documents that are likely to be useless.

Precision and recall values can change over time as the user examines more documents to

determine their relevance. Typically, good information retrieval systems should

maximize both a high precision and a high recall. It can be shown that the recall value

increases as the number of documents returned increases, while precision decreases.

Therefore, users interested in high recall tend to submit broader, more general queries,

while users interested in higher precision tend to submit more specific queries [Salton,

83].

To determine the appropriate set of relevant documents, an expert in the area of

the content of the documents must determine, given some query, which documents would

be relevant and expected to be returned. To better understand the precision and recall

measures an example is provided below. Assume the following

R q = {d1, d5, d6}

 60

Where Rq is the set of relevant documents expected to be returned. The following

documents were returned for some query q:

d1 d1 d8 d5 d3 d6

The documents that are relevant to query q are bolded. To calculate the precision

and recall measures, first examine the returned set of documents from top to bottom and

see that the first document returned is relevant, d1. Since this document corresponds to

33% of all relevant documents then it can be said that we have a precision of 100% at

33% recall. Looking at the next relevant document, d5, it is found at position four,

consequently, it would have a precision of 50% at 66% recall. Finally, the last relevant

document would have 50% precision at 100% recall. This information from several

algorithms can be plotted in a precision vs. recall graph to examine certain trends.

Typically, the better performing algorithm’s line will be closest to the upper right corner

of the graph. The precision recall graph from the above example can be seen in Figure

21.

0
0.2

0.4
0.6

0.8
1

1.2

0.33 0.66 1

Figure 21. Precision-Recall Graph for Example

 61

4.5.4 Results

4.5.4.1 Indexing Speed

The indexing speed was tested using various sizes of cache to limit the number of

reads and writes to the B-Tree on disk. Results can be seen in Figure 22. Increasing the

cache size from 1000 to 10,000 documents can effectively reduce the amount of indexing

time by 300%. Note that the true indexing time, time spent not writing to disk, remains

constant regardless of the cache size used.

 Indexing Speed

0

2000

4000

6000

8000

10000

12000

14000

16000

10000 1000
Cache Size (in Documents)

Ti
m
e
(in
Se
co
nd
s)

Indexing Time
After Indexing True Indexing

Writing to Disk

Figure 22. Indexing Speed with Various Levels of Caches

4.5.4.2 Query Speed

The query speed was tested on nine different databases ranging from 10,000

records to 90,000 records in 10,000 record increments. Identical queries were executed

using the Vector and Extended Boolean model on each of the nine databases (Query

 62

Terms: Development, Self, T-72, T-62). Variations of the Extended Boolean model

were tried by varying the p-norm value from p=1 to p=3. The results can be seen in

Figure 23.

As Figure 23 indicates, the query speed does grow linearly with the number of

returned documents. This is the exact scenario the tool was trying to avoid. However,

returning 90,000 documents to the user is unreasonable as most users would not want this

many documents returned to search through to find their relevant documents. Therefore,

users may take advantage of the filtering options of the query tool to narrow their search

with more specific criteria.

Query Speed

0

1000

2000

3000

4000

5000

6000

7000

8000

10000 20000 30000 40000 50000 60000 70000 80000 90000

N umber o f R elevant D ocument s

Vector
Ext . Boolean (p=1)
Ext . Boolean (p=2)
Ext . Boolean (p=3)

Figure 23. Query Speed of Various IR Models

 63

4.5.4.3 Relevant Document Retrieval

The retrieval of relevant documents is the core function of the Query Tool. The

results of the execution of the four queries discussed above can be seen in Figures 24

through Figure 27. Each individual query listed below was selected to test the

hierarchical functionality of the thesaurus, but also the stemming approach discussed

earlier. Without the thesaurus, the precision-recall graphs would go to zero, indicating

that not all of the relevant documents have been returned, because no synonyms could be

found within and across databases. Therefore, only a partial list of relevant documents

would be retrieved depending on the spelling of the word entered. In addition, the test

cases also indicate that the concept of a higher-level concept not found in the text of a

document can also be located and scored. However, the ranking of the documents tend to

favor the words that has the highest weights, however, all relevant documents were

retrieved. In addition, the stemming approach appears to be a success. Without

stemming, the precision-recall graphs of queries 1 and 2 would go to zero.

Queries:

1. Tank being fired upon

2. T-72 on bridge

3. Tank firing weapons

4. Tank with battle damage

 64

However, there are some instances when the hierarchical thesaurus provided no

increase in precision or recall. This is because the thesaurus cannot take into account

phrases that may have the same meaning as an individual word. For instance, “battle

damage” and “explosion” cannot be assigned synonyms of one another. This is why the

precision-recall graph of query 4 is so poor. In addition, one must be careful when

assigning words as synonyms of one another due to the possible multiple meanings of

words.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

Recall

Pr
ec

is
io

n Vector
Ext Bool (p=1)
Ext Bool (p=2)
Ext Bool (p=3)

Figure 24. Precision-Recall Graph for Query 1

 65

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

Recall

Pr
ec

is
io

n Vector
Ext Bool (p=1)
Ext Bool (p=2)
Ext Bool (p=3)

Figure 25. Precision-Recall Graph for Query 2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

Recall

Pr
ec

is
io

n Vector
Ext Bool (p=1)
Ext Bool (p=2)
Ext Bool (p=3)

Figure 26. Precision-Recall Graph for Query 3

 66

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

Recall

Pr
ec

is
io

n Vector
Ext Bool (p=1)
Ext Bool (p=2)
Ext Bool (p=3)

Figure 27. Precision-Recall Graph for Query 4

4.6 Summary

This chapter presents the implementation of the Hierarchical Thesaurus and

Indexing Tool and Query Tool as outlined in Chapter 3. The implementation of the

Schema Integration Tool and the Query Tool follow the guidelines of the functional

requirements of each tool discussed in Chapter 3. During the implementation two key

issues needed to be addressed, speed and memory. The precision and recall evaluation

criteria are the primary determinate of how well these tools function together.

Ultimately, the precision-recall graphs indicate there is a significant improvement in

performance when implementing the hierarchical concept thesaurus methodology to

retrieve relevant documents from heterogeneous databases.

 67

V. Conclusions and Future Work

5.1 Summary of Research

This research has developed two tools, which together, provide users a

mechanism to retrieve relevant documents from multiple heterogeneous databases within

the VDL environment.

The first tool, the Hierarchical Thesaurus and Indexing Tool, has two major

functional areas: hierarchical thesaurus creation and maintenance and document indexing.

The hierarchical thesaurus provides the VDL administrator the capability to assign

synonyms to words to alleviate the problems encountered within a multiple

heterogeneous environment. This tool not only allows word synonyms, but also a

hierarchy of categories, or concepts, that contain other categories or additional words. By

taking this approach, stemming can also be accomplished, however without the space

savings. The tool also performs the indexing functions to create an inverted file of words

in the document collection and the documents in which they appear. The caching

technique discussed in Chapter 3 and implemented in Chapter 4 provides increased speed

when indexing a large number of documents in a database.

The Query Tool has two major functions as well. First the users may filter out

undesired documents by specifying strict document filtering criteria before proceeding to

the crucial step of retrieving relevant documents. The tool uses the inverted file created

by the thesaurus tool to rank and return potential relevant documents.

 68

5.2 Results

The initial results indicate the inclusion of a hierarchical thesaurus to map

between various database schemas and data values significantly increase the precision-

recall levels within the VDL environment is an overwhelming success. However, there

are a number of areas that could be explored to possibly increase performance that are

discussed in the next few sections.

5.3 Future Research Recommendations

Future research in information retrieval within the VDL area should focus on the

incorporation of relevance feedback into the query tool. In addition, extending this tool

to work in a web-based environment for multiple users, and the evaluation of the

indexing and query capabilities to determine possible increases in speed and reduction of

memory should also be evaluated.

5.3.1 Relevance Feedback

Extending the Query Tool to incorporate relevance feedback from the user should

be the next step in increasing the functionality of the tool. This additional feature would

allow a user to submit a second query with the characteristics of an ideal image that was

retrieved by the initial query. This could be implemented using image thumbnails to

allow the user to view the images that are the most relevant. This technique could be

done any number of times by the user until they are satisfied with the returned results.

 69

5.3.2 Phrase to Phrase and Phrase to Word Mapping

Currently the system implemented in this research is constrained by only mapping

individual words to other individual words. The idea that multiple words mapping to

either other multiple words or another single word should be explored to determine if this

approach could increase system performance.

5.3.3 Web-based Application for Multiple Users

This research made the assumption that the databases, hierarchical thesaurus tool

and query tool resided on the same computer. The next logical step is to extend the query

tool to work in a web-based environment. This would allow multiple users from any

where in the world to have access to the inverted file to retrieve relevant documents

simultaneously.

5.3.4 Increased Indexing and Query Retrieval Speed

As seen in Chapter 4, the indexing speed is based on the size of the cache and the

number of times the B-Tree is read and written to. Perhaps, other techniques, such as a

file-based approach along with a merge sort would provide a faster indexing speed. In

addition, the query speed increases directly proportional to the number of documents

retrieved. Once again, possibly a different methodology could provide increased

performance for processing documents during a query submission.

 70

5.4 Summary

This work developed two tools, that when used together, can retrieve relevant

documents from multiple heterogeneous relational databases. The foundation of this

system is based on a hierarchical thesaurus by which synonyms and higher-level concepts

can be assigned.

As a result of this work, AFRL/SN now has the capability to retrieve images from

multiple databases, based on the metadata descriptions of the images found in the

databases. These images are scored and ranked by order of relevance to the user by

applying various information retrieval techniques.

The main focus of this research, the creation and maintenance of a hierarchical

thesaurus has proven to dramatically increase the recall and precision by allowing users

to submit synonyms and high-level concepts that may not be found directly in the

document collection.

Recommendations for future research in this area include the application of user

relevance feedback based on documents returned from the initial query, the development

of a web-based implementation of this tool to allow multiple users at the same time, and

increased efficiency in document indexing and relevant document retrieval regardless of

document collection size.

In the future, the user can re-submit the query based on documents they have

deemed relevant from the initial result set to pinpoint exactly what they are seeking.

 71

A. Relevant Documents Retrieved

A.1 Query 1

Vector Ext Bool 1 Ext Bool 2 Ext Bool 3
* 3000016 * 3000016 * 3000016 * 3000016
* 1000025 * 1000025 * 1000025 * 1000025
1000021 1000021 * 1000024 1000015
1000017 1000017 * 1000020 * 1000024
3000019 3000019 1000015 * 1000020

* 1000024 * 1000024 3000023 3000023
* 1000020 * 1000020 * 3000021 * 3000021
1000015 1000015 1000021 1000021
3000023 3000023 1000017 1000017

* 3000021 * 3000021 3000019 3000019
3000015 3000015 3000015 3000015

* 3000008 * 3000008 * 3000008 * 3000008
A.2 Query 2

Vector Ext Bool 1 Ext Bool 2 Ext Bool 3
* 2000020 * 2000020 * 2000020 * 2000020
* 3000005 * 3000005 2000007 2000007

2000015 2000015
2000018 2000018

* 3000005 * 3000005
A.3 Query 3

3000020 3000020 3000020 * 3000021
* 3000023 * 3000023 * 3000023 * 3000023
* 1000024 * 1000024 * 1000024 * 1000024
1000020 1000020 1000020 1000020

* 1000015 * 1000015 * 1000015 * 1000015
3000025 * 3000021 * 3000021 3000020
3000024 3000016 3000016 3000016
3000022 * 3000015 * 3000015 * 3000015

* 3000021 3000025 3000025 3000008
1000025 3000024 3000024 * 3000007
1000002 3000022 3000022 * 3000006
1000001 1000025 1000025
3000019 1000002 1000002
3000018 1000001 1000001
3000017 3000008 3000008
3000016 * 3000007 * 3000007

* 3000015 * 3000006 * 3000006

 72

1000023
1000022
1000021
1000019
1000018
1000017
1000016
1000014
1000013
2000008
2000007
2000005
2000004
2000003
2000002
2000001
3000014
3000013
3000012
3000011
3000010
3000009
3000008

* 3000007
* 3000006

A.4 Query 4

Vector Ext Bool 1 Ext Bool 2 Ext Bool 3
3000020 3000020 * 1000025 * 1000025
2000004 2000004 3000020 3000020
2000002 2000002 2000004 2000004

* 1000025 * 1000025 2000002 2000002
1000021 1000021 1000021 2000018
2000018 2000018 2000018 2000013
2000013 2000013 2000013 1000021
1000006 * 3000019 * 3000019 * 3000019
3000023 1000006 1000006 * 3000021
1000024 * 3000021 * 3000021 1000006

* 1000020 3000023 3000023 3000023
1000015 1000024 1000024 1000024
1000002 * 1000020 * 1000020 * 1000020
1000001 1000015 1000015 1000015
3000025 1000002 1000002 1000002
3000024 1000001 1000001 1000001
3000022 3000025 3000025 1000005

* 3000021 3000024 1000005 3000025

 73

* 3000018 3000022 3000024 1000022
3000017 1000005 3000022 1000023
1000023 1000022 1000022 1000019
1000019 * 3000018 * 3000018 1000018
1000018 3000017 3000017 * 3000018
2000008 1000023 1000023 3000017
2000007 1000019 1000019 2000008
2000006 1000018 1000018 2000007
2000005 2000008 2000008 2000006
2000003 2000007 2000007 2000005
2000001 2000006 2000006 2000003

* 3000019 2000005 2000005 2000001
* 3000016 2000003 2000003 3000024
3000015 2000001 2000001 3000022
1000022 1000017 1000017 1000017
1000017 1000013 1000013 1000013
1000016 2000010 2000010 2000010
1000014 * 3000016 * 3000016 2000023
1000013 3000015 3000015 2000022
3000014 1000016 1000016 2000021
3000013 1000014 1000014 2000020
3000012 3000014 3000014 2000017
3000011 3000013 3000013 2000016
3000010 3000012 3000012 2000015
3000009 3000011 3000011 2000014

* 3000003 3000010 3000010 2000012
3000009 3000009 2000009

* 3000003 * 3000003 3000014
3000013
3000012
3000011
3000010
3000009

* 3000003
3000002
3000001
1000012
1000010
1000007
1000016
1000014

* 3000016

 74

B. Query Speed

B.1 Query Speed for 10,000 Documents

10000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 660 880 550 600
2 710 550 550 600
3 550 550 540 600
4 490 880 870 600
5 770 550 550 600
6 490 550 600 940
7 440 940 550 610
8 770 550 880 600
9 490 550 550 540
10 490 550 600 610

Average 586 655 624 630
StdDev 128.2532 169.8529 134.0149 110.755

B.2 Query Speed for 20,000 Documents

20000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 1420 1590 1590 1210
2 990 1210 1380 1590
3 1260 1600 1590 1210
4 1370 1210 1210 1260
5 990 1650 1650 1600
6 1420 1150 1160 1200
7 990 1150 1700 1270
8 990 1480 1150 1650
9 930 1150 1210 1210
10 990 1150 1540 1210

Average 1135 1334 1418 1341
StdDev 205.6021 216.9588 219.5349 189.9386

 75

B.3 Query Speed for 30,000 Documents

30000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 1700 2470 2470 1920
2 1920 1870 1810 1980
3 1480 1810 1820 1920
4 1480 2080 2470 1920
5 1920 1810 1870 1920
6 1480 1870 1810 1980
7 1480 1810 2470 1930
8 2030 2250 1820 2360
9 1540 1870 1810 1920
10 1480 1870 2470 1920

Average 1651 1971 2082 1977
StdDev 223.4303 225.4107 334.3917 136.7926

B.4 Query Speed for 40,000 Documents

40000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 2200 2860 2420 2580
2 1970 2360 2360 2530
3 2470 3130 2410 3070
4 1980 2360 3080 2470
5 2030 2420 2410 2580
6 2420 2800 2410 3080
7 1920 2360 2860 2580
8 2800 2360 2310 2520
9 1980 2360 2420 3180
10 1980 2360 2910 2530

Average 2175 2537 2559 2712
StdDev 294.4769 284.1772 277.3065 278.2006

B.5 Query Speed for 50,000 Documents

50000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 2750 3070 3020 4060
2 3460 3790 3900 3240
3 2520 3020 3020 3180
4 3130 3790 3840 3130
5 2470 2970 3020 3130
6 3130 3740 3900 4120
7 2530 3020 2970 3180
8 3130 3790 2970 3180
9 2530 2970 3510 3960
10 3290 3900 3020 3130

Average 2894 3406 3317 3431
StdDev 372.6243 420.1904 419.5513 427.8486

 76

B.6 Query Speed for 60,000 Documents

60000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 3240 3740 3570 4890
2 3070 4450 4560 3790
3 3900 3630 3570 3790
4 3070 4510 4620 4510
5 3950 3630 3620 3790
6 3070 4670 3570 3790
7 4170 3620 4230 4440
8 3080 4720 3570 3790
9 3020 3570 4610 4890
10 3240 4560 3570 3850

Average 3381 4110 3949 4153
StdDev 443.0312 504.7772 490.5654 476.8892

B.7 Query Speed for 70,000 Documents

70000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 3850 5390 5390 5440
2 3680 4390 4340 4620
3 4560 5280 5280 5710
4 3620 4340 4340 4560
5 4560 5330 5440 5550
6 3630 4340 4340 4560
7 4730 5490 5270 5500
8 3620 4340 4340 4560
9 4720 5380 5320 5430
10 3680 4340 4340 4610

Average 4065 4862 4840 5054
StdDev 504.3423 542.4185 529.2972 503.6798

B.8 Query Speed for 80,000 Documents

80000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 550 5330 5980 6970
2 4450 6040 6040 6320
3 5330 6430 6480 6820
4 4450 5280 5280 5600
5 5110 5990 5980 6370
6 5600 6530 6480 6920
7 4440 5270 5270 5600
8 5160 5990 6040 6310
9 5600 6490 6540 6860
10 4450 5270 5330 5610

Average 4514 5862 5942 6338
StdDev 1473.026 532.3282 496.9865 564.1473

 77

B.9 Query Speed for 90,000 Documents

90000 Vector ExtBool 1 ExtBool 2 ExtBool 3
1 5160 7090 6970 7090
2 5830 7140 7200 7520
3 6150 7080 6970 7530
4 6040 7030 7140 7420
5 5880 7040 7190 7360
6 5930 7030 7030 7530
7 5980 7090 7200 7360
8 6040 7080 7140 7520
9 5870 7140 7090 7470
10 5980 7090 7090 7410

Average 5886 7081 7102 7421
StdDev 272.2825 39.5671 88.29244 134.5321

B.10 Summation of Query Speeds

Vector EB (P=1) EB (P=2) EB (P=3)
10000 586 655 624 630
20000 1135 1334 1418 1341
30000 1651 2082 2082 1977
40000 2175 2559 2559 2712
50000 2894 3317 3317 3431
60000 3381 3949 3949 4153
70000 4065 4840 4840 5054
80000 4514 5942 5942 6338
90000 5886 7102 7102 7421

 78

Bibliography

Codd, E.F., “A Relational Model of Data for Large Shared Data Banks,” CACM, 13(6):
377-387 (1970).

Cormen, T. and others. Introduction to Algorithms (14th Edition). Cambridge: The MIT
Press, 1990.

Croft, W., and others. “Providing Government Information on the Internet: Experiences
with THOMAS.” Digital Libraries Conference DL ’95: 19-24, (1995).

Dempsey, L. and R. Heery. “Specification for Resource Description Methods Part 1: A
Review of Metadata: A Survey of Current Resource Description Formats.” Report to the
European Union on the DESIRE Project, 21 March 1997.
http://www.ukoln.ac.uk/metadata/desire/overview/

Gilliland-Swetland, A. “Introduction to Metadata: Setting the Stage, Categorizing
Metadata” Excerpt from Book. n pag. http://www.getty.edu/research/institute/standards/
intrometadata/2_articles/index.html.

Harman, D. “How Effective is Suffixing?” The Journal of the American Society for
Information Science, 42(1): 7-15, (1991).

Hooten, D.B. A Traffic Pattern-Based Comparison of Bulk Image Request Response
Time for a Virtual Distributed Laboratory. MS thesis, AFIT/GCS/ENG/01M-03. School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH,
March 2001 (ADA392024).

Krovetz, R. “Viewing Morphology as an Inference Process.” Computer science
technical report. University of Massachusetts, Amherst: 93-96.

Mandala, R., and others. “Combining Multiple Evidence from Different Types of
Thesaurus for Query Expansion.” Proceedings of the 22nd Annual International ACM
SIGIR conference on Research and Development in Information Retrieval, (1999).

Riloff, E. “Little Words Can Make a Big Difference for Text Classification.”
Proceedings of the 18th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval: 130-136, (1995).

Salton, G. and M. McGill. Introduction to Modern Information Retrieval. New York:
McGraw-Hill, 1983.

Salton, G. The SMART Retrieval System: Experiments in Automatic Document
Processing. Englewood Cliffs: Prentice-Hall, 1971.

 79

http://www.ukoln.ac.uk/metadata/desire/overview/
http://www.getty.edu/research/institute/standards/

Salton, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of
Information by Computers. New York: Addison-Wesley, 1989.

Salton, G. Automatic Information Organization and Retrieval. New York: McGraw-
Hill, 1968.

Silberschatz, A. and others. Database System Concepts (4th Edition). New York:
McGraw-Hill, 2002.

VDL White Paper, “Collaborative Environments: The Virtual Distributed Laboratory”.
Planet SDMS E-zine, Spring.

VDL Marketing Slides. Air Force Research Laboratory, Sensors Directorate. Wright-
Patterson AFB, OH. 20 April 2001.

Ward, J. Enhancing a Virtually Distributed Library User Interface Via Server-Side User
Profile Caching. MS thesis. AFIT/GCS/ENG/00M-23. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB, OH, March 2000,
(ADA380777).

Worsley, J. and J. Drake. Practical PostgreSQL. Command Prompt, Inc, 2001.
http://stage.linuxports.com/projects/postgres/book1.htm

Zobel, J., and others. “Inverted Files Versus Signature Files for Text Indexing.” ACM
Transactions on Database Systems, 23: 453-490 (December 1998).

 80

http://stage.linuxports.com/projects/postgres/book1.htm

Vita

First Lieutenant Rodney D. Lykins was born in 1976 in Dayton, OH. He

graduated from Northmont High School in Dayton in June 1994. In 1998 he was

accepted into the AFROTC at Bowling Green State University where he completed a

Bachelor of Science in Computer Science and was commissioned in May 1998.

His first assignment as a Second Lieutenant was to the Communications

Squadron, Vandenberg AFB, CA, as a Producer/Director in the Visual Information flight.

In August 2000, he entered the Graduate School of Engineering and Management, Air

Force Institute of Technology. Upon Graduation, he will be assigned to the 805th

Computer Systems Squadron at Scott AFB, IL.

 81

	Acknowledgments
	List of Figures
	Introduction
	Definition of Terms
	VDL Problem Statement
	VDL Research Focus
	Summary

	Literature Review
	Introduction
	VDL Overview
	Metadata
	Relational Database Model
	Data Storage
	Data Access and Manipulation

	Heterogeneous Databases
	Schema Differences
	Identical Data With Different Name
	Different Data With Same Name
	Unit Of Measure Differences

	Information Retrieval
	Information Retrieval Models
	Boolean Model
	Vector Model
	Extended Boolean Model

	Information Retrieval Techniques
	Inverted File
	Stop Words
	Stemming
	Thesauri

	B-Trees
	Summary

	Methodology
	Introduction
	Development Tools
	Call and Return Architecture
	Programming Language

	Hierarchical Thesaurus and Indexing Tool
	General Approach
	Document Representation
	Hierarchical Thesaurus
	Database Parsing
	Indexing
	Document Indexing
	Column Headings

	Query Tool
	General Approach
	Relevant Document Retrieval
	Relevant Document Ranking

	Design Architecture
	Schema Integration Tool
	Parsing
	Hierarchy Creation
	Indexing

	Query Tool
	Filtering
	Relevant Document Ranking

	Summary

	Implementation and Results
	Introduction
	Design Issues
	Memory
	Speed

	Hierarchical Thesaurus and Indexing Tool
	Parsing Documents
	Hierarchy Thesaurus Generation
	Indexing

	Query Tool
	Relevant Image Filtering
	Relevant Image Ranking
	Vector Model
	Extended Boolean Model

	Tool Demonstration
	Hardware and Software Platforms
	Databases
	Hierarchical Thesaurus Testing Databases
	Queries and Relevant Documents

	Evaluation Criteria
	Indexing Speed
	Query Speed
	Relevant Document Retrieval
	Recall / Precision Variable Explanation
	Precision vs. Recall

	Results
	Indexing Speed
	Query Speed
	Relevant Document Retrieval

	Summary

	Conclusions and Future Work
	Summary of Research
	Results
	Future Research Recommendations
	Relevance Feedback
	Phrase to Phrase and Phrase to Word Mapping
	Web-based Application for Multiple Users
	Increased Indexing and Query Retrieval Speed

	Summary

	Bibliography

	Vita

